Climate Change and Water Use Partitioning by Different Plant Functional Groups in a Grassland on the Tibetan Plateau

نویسندگان

  • Jia Hu
  • Kelly A. Hopping
  • Joseph K. Bump
  • Sichang Kang
  • Julia A. Klein
چکیده

The Tibetan Plateau (TP) is predicted to experience increases in air temperature, increases in snowfall, and decreases in monsoon rains; however, there is currently a paucity of data that examine the ecological responses to such climate changes. In this study, we examined the effects of increased air temperature and snowfall on: 1) water use partitioning by different plant functional groups, and 2) ecosystem CO2 fluxes throughout the growing season. At the individual plant scale, we used stable hydrogen isotopes (δD) to partition water use between shallow- and deep-rooted species. Prior to the arrival of summer precipitation (typically mid-July), snowmelt was the main water source in the soils. During this time, shallow and deep-rooted species partitioned water use by accessing water from shallow and deep soils, respectively. However, once the monsoon rains arrived, all plants used rainwater from the upper soils as the main water source. Snow addition did not result in increased snowmelt use throughout the growing season; instead, snowmelt water was pushed down into deeper soils when the rains arrived. At the larger plot scale, CO2 flux measurements demonstrated that rain was the main driver for net ecosystem productivity (NEP). NEP rates were low during June and July and reached a maximum during the monsoon season in August. Warming decreased NEP through a reduction in gross primary productivity (GPP), and snow additions did not mitigate the negative effects of warming by increasing NEP or GPP. Both the isotope and CO2 flux results suggest that rain drives productivity in the Nam Tso region on the TP. This also suggests that the effects of warming-induced drought on the TP may not be mitigated by increased snowfall. Further decreases in summer monsoon rains may affect ecosystem productivity, with large implications for livestock-based livelihoods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands

The biodiversity-productivity relationship is still under debate for alpine grasslands on the Tibetan Plateau. We know little about direct and indirect effects of biotic and abiotic drivers on this relationship, especially in regard to plant functional trait diversity. Here, we examine how aboveground net primary productivity (ANPP) and precipitation use efficiency (PUE) respond to climate, soi...

متن کامل

Climate change effects on wheat yield and water use in oasis cropland

Agriculture of the inland arid region in Xinjiang depends on irrigation, which forms oasis of Northwest China. The production and water use of wheat, a dominant crop there, is significantly affected by undergoing climate variability and change. The objective of this study is to quantify inter-annual variability of wheat yield and water use from 1955 to 2006. The farming systems model APSIM (Agr...

متن کامل

Linking above- and belowground traits to soil and climate variables: an integrated database on China's grassland species.

Knowledge of plant functional traits and trait-environment interactions is important for characterizing species strategies and understanding ecological processes. However, comprehensive field data on both above- and belowground traits, together with their environmental variables are scarce. Biome-scale studies are particularly lacking. Here we present two large-scale data sets that include func...

متن کامل

Climate Change-Induced Range Expansion of a Subterranean Rodent: Implications for Rangeland Management in Qinghai-Tibetan Plateau

Disturbances, both human-induced and natural, may re-shape ecosystems by influencing their composition, structure, and functional processes. Plateau zokor (Eospalax baileyi) is a typical subterranean rodent endemic to Qinghai-Tibetan Plateau (QTP), which are considered ecosystem engineers influencing the alpine ecosystem function. It is also regarded as a pest aggravating the degradation of ove...

متن کامل

Community assembly and functional leaf traits mediate precipitation use efficiency of alpine grasslands along environmental gradients on the Tibetan Plateau

The alpine grasslands on the Tibetan Plateau are sensitive and vulnerable to climate change. However, it is still unknown how precipitation use efficiency (PUE), the ratio of aboveground net primary productivity (ANPP) to precipitation, is related to community assembly of plant species, functional groups or traits for the Tibetan alpine grasslands along actual environmental gradients. We conduc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013